#### Concept
Autoencoders are neural networks used for unsupervised learning tasks, particularly for dimensionality reduction and data compression. They learn to encode input data into a lower-dimensional representation (latent space) and then decode it back to the original data. The goal is to make the reconstructed data as close to the original as possible.
#### Key Components
1. Encoder: Maps the input data to a lower-dimensional space.
2. Latent Space: The compressed representation of the input data.
3. Decoder: Reconstructs the data from the lower-dimensional representation.
#### Key Steps
1. Encoding: Compress the input data into a latent space.
2. Decoding: Reconstruct the input data from the latent space.
3. Optimization: Minimize the reconstruction error between the original and the reconstructed data.
#### Implementation
Let's implement an autoencoder using Keras to compress and reconstruct images from the MNIST dataset.
##### Example
# Import necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist
# Load the MNIST dataset
(x_train, _), (x_test, _) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
# Define the autoencoder architecture
input_dim = x_train.shape[1]
encoding_dim = 32
# Encoder
input_img = Input(shape=(input_dim,))
encoded = Dense(encoding_dim, activation='relu')(input_img)
# Decoder
decoded = Dense(input_dim, activation='sigmoid')(encoded)
# Autoencoder model
autoencoder = Model(input_img, decoded)
# Compile the model
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
# Train the model
autoencoder.fit(x_train, x_train,
epochs=50,
batch_size=256,
shuffle=True,
validation_data=(x_test, x_test))
# Encoder model to extract the latent representation
encoder = Model(input_img, encoded)
# Decoder model to reconstruct the input from the latent representation
encoded_input = Input(shape=(encoding_dim,))
decoder_layer = autoencoder.layers[-1]
decoder = Model(encoded_input, decoder_layer(encoded_input))
# Encode and decode some digits
encoded_imgs = encoder.predict(x_test)
decoded_imgs = decoder.predict(encoded_imgs)
# Plot the original and reconstructed images
n = 10
plt.figure(figsize=(20, 4))
for i in range(n):
# Display original
ax = plt.subplot(2, n, i + 1)
plt.imshow(x_test[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
# Display reconstruction
ax = plt.subplot(2, n, i + 1 + n)
plt.imshow(decoded_imgs[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
Result
Epoch 50/50
791/791 ━━━━━━━━━━━━━━━━━━━━ 4s 5ms/step - loss: 1.7999e-04
Test Loss: 2.278068132000044e-05
No comments:
Post a Comment